Жидкокристаллические цифро-знаковые индикаторы. Жидкокристаллические индикаторы (ЖКИ)

В настоящее время наблюдается значительный подъем производства радиоэлектронной аппаратуры в России. На рынке появилось разнообразное оборудование для автоматизированной сборки плат как отечественного, так и зарубежного производства. Технология же производства жидкокристаллических индикаторов (ЖКИ) на сегодняшний день в России трудно осуществима по двум причинам. Во-первых, необходимо устанавливать управляющие кристаллы на плату по технологии кристалл на плату (COB). Во-вторых, отсутствуют доступные кристаллы российского производства. Компания МЭЛТ уже более двух лет занимается решением этих задач. Разработаны и серийно производятся управляющие кристаллы для различных вариантов жидкокристаллических модулей. Запущена собственная линия сборки методом COB. Качество производства модулей обеспечивается современным технологическим оборудованием и применением новейших разработок компании МЭЛТ.

Конструкция ЖКИ

Компания МЭЛТ производит ЖКИ по стандартной конструкции, завоевавшей популярность во всем мире: жесткое основание модуля в виде печатной платы с установленной на ней М/С контроллера по технологии COB. Металлическая рамка фиксирует ЖК-панель и прижимает токопроводящую резину к плате и стеклу. Одним из несомненных преимуществ данной конструкции является возможность восстанавливать работоспособность модулей путем несложной замены платы или ЖК-панели.

Технология Chip On Board (СОВ)

Известны два варианта установки микросхем на плату. Первый - кристалл упаковывается в пластмассовый корпус с гибкими или жесткими выводами, которые припаиваются к плате. Преимущества этого способа: ремонтопригодность, простота установки, а существенный недостаток - высокая цена. Стоимость корпуса кристалла сравнима со стоимостью платы, на которую он впоследствии будет устанавливаться, поэтому есть смысл устанавливать кристалл непосредственно на плату. В этом случае при выходе из строя кристалла плату попросту заменяют новой. Сборка индикаторов по технологии Chip On Board гарантирует получение достаточно конкурентоспособной продукции, полностью соответствующей международным требованиям качества.

Температурный диапазон

Температурный диапазон ЖКИ определяют физико-химические свойства ЖК-панели. При понижении температуры увеличивается время переключения ЖК-панели, что делает трудноосуществимой динамическую индикацию. Дальнейшее понижение температуры приводит к разрушению ЖК-панели. Таким образом, если выключено питание прибора, где установлен ЖКИ с подогревом, то при низкой температуре работоспособность модуля утрачена. Для решения этой проблемы компания МЭЛТ выпускает ЖКИ двух температурных диапазонов: обычного (0...50 °С) и расширенного (–30...70 °С).

Тип ЖК-панели ЖКИ

Компания МЭЛТ выпускает ЖКИ с ЖК-панелями двух видов: Reflective - работает на отражение светового потока и Transflective - на просвет (рис. 1). Стекла типа Transflective бывают двух типов: positive и negative. Рositive представляет собой прозрачный фон, на котором при подаче соответствующих сигналов становятся непрозрачными определенные участки. Negative представляет собой непрозрачный фон, на котором становятся прозрачными соответствующие участки.

ЖКИ с ЖК-панелями Transflective дороже, поскольку в них применяется дополнительный элемент подсветки. Их рекомендуется использовать в конструкциях, которые эксплуатируются при любых условиях освещения.

Тип подсветки

В ЖКИ, выпускаемых компанией МЭЛТ, применяют светодиодную (LED) и люминесцентную (EL) подсветки. LED-подсветка отличается долговечностью (20 000–100 000 часов), не требует дополнительного источника питания, однако у нее достаточно высокий ток потребления (от 10 до 100 мА) и большие габаритные размеры (высота индикатора увеличивается в среднем на 3–5 мм). EL-подсветка отличается весьма низким током потребления при повышенной светоотдаче и малыми габаритами, но этот тип подсветки требует дополнительного источника питания (100 В), а срок службы составляет 2000–5000 часов. В настоящее время ЖКИ с EL-подсветкой находятся в стадии подготовки к производству.

Напряжение питания ЖКИ

Один из наиболее привлекательных моментов для разработчика - широкий диапазон питающих напряжений. Управляющая микросхема ЖКИ требует напряжения питания от 3 до 6 В. Однако для получения нормальной контрастности ЖК-панели на нее требуется подавать напряжение от 3 до 16 В в зависимости от температуры окружающей среды и типа самого стекла. Таким образом, если требуется ЖКИ с напряжением питания 3 В, то достаточно взять серийный модуль и в дополнение к нему собрать микромощный преобразователь напряжения, выход которого необходимо соединить со входом управления контрастностью ЖКИ (рис. 2). От выходного напряжения преобразователя в этом случае зависит контрастность ЖКИ. Если напряжение питания индикатора и ЖК-панели равны, то контрастность можно регулировать при помощи подстроечного резистора, включенного между входом V0 и GND ЖКИ. Контрастность ЖКИ зависит также и от рабочей температуры, поэтому для изделия, работающего в широком диапазоне температур, выходное напряжение преобразователя следует сделать термозависимым. Обратите внимание, что на ЖКИ любого типа недопустимо воздействие статического электричества выше 30 В.

Жидкокристаллический модуль МТ-10Т7-7

Жидкокристаллический модуль МТ-10Т7-7 является самым простым из выпускаемых компанией МЭЛТ ЖКИ. Этот модуль стал наиболее популярным при разработке простых конструкций в связи с невысокой ценой и очень удобным интерфейсом. Он собран на односторонней печатной плате с одним управляющим кристаллом. Все элементы модуля расположены между платой и стеклом, что позволило обеспечить наивысшее качество и надежность (рис. 3). Модуль может отображать десять знакомест, каждое знакоместо представляет собой восемь сегментов, расположенных в виде восьмерки с точкой (рис. 4). Любой сегмент любого знакоместа можно включать и выключать независимо от других сегментов, что позволяет обеспечить достаточно информативную индикацию в недорогих конструкциях. Структурная схема модуля МТ-10Т7-7 приведена на рис. 5. Память модуля состоит из десяти регистров, соответствующих каждому из десяти знакомест. Каждый регистр поделен на две тетрады, старшую (H) и младшую (L). Старшая тетрада соответствует сегментам h, b, c и f, младшая - g, e, d и a (рис. 4). Запись высокого уровня вызывает высвечивание соответствующего сегмента, запись низкого уровня - его погасание.

Описание интерфейса

Запись данных в любой из регистров индикатора производится следующим образом. На шине данных (DB0-DB3) выставляется адрес регистра. Сигнал адрес/данные (A0) необходимо установить в значение 0. Адрес в регистре DCA защелкнется при условии WR1 & ^WR2, то есть одновременного сочетания высокого уровня на выводе WR1 и низкого уровня на выводе WR2. Такое решение позволяет более гибко осуществлять функцию CS (выбор кристалла), когда на шине данных находится несколько различных устройств. Если в этом нет необходимости, то вывод WR2 можно замкнуть на GND, а сигнал CS подавать на вывод WR1. После того как адрес защелкнут в регистре DCA, следует подать данные. Для этого вывод A0 надо перевести в высокое состояние, на шине данных установить значение младшей тетрады данных и подать сигнал CS (см. выше). Далее на шину данных подать значение старшей тетрады данных и вновь подать сигнал CS. После записи второй тетрады содержимое адреса инкрементируется, и можно записывать данные в последующие регистры без предварительной записи адреса. По адресу 0Fh расположен триггер блокировки шины. Запись в него DB0 = «L» вызовет блокировку записи в модуль адресов и данных. Разблокировка шины производится записью DB0 = «H» по адресу 0Fh. Первой командой после подачи питания должна быть команда разблокировки шины, так как состояние регистров индикатора может быть любым.

Назначения выводов модуля приведены в табл. 1. Соответствие адресов регистров данных и номеров знакомест модуля - в табл. 2. Динамические характеристики модуля показаны на рис. 6 и в табл. 3. Электрические параметры по постоянному току приведены в табл. 4. Габаритные размеры модуля МТ-10Т7-7 указаны на рис. 7. Временные диаграммы записи данных в индикатор приведены на рис. 8. В настоящее время ЖКИ МТ-10Т7-7 производится серийно в стандартном температурном диапазоне со стеклом Reflective. Другие варианты исполнения ЖКИ производятся под заказ. Зарубежных аналогов у ЖКИ МТ-10Т7-7 нет.

Жидкокристаллические модули со встроенным знакогенератором

Общее описание

В настоящее время компания МЭЛТ серийно производит три типа жидкокристаллических модулей со встроенным знакогенератором: MT-10S1-2, MT-16S2-2Н, MT-16S2-2D (рис. 9–11). В процессе подготовки к производству находится ЖКИ МТ-16S2Q, который отличается от MT-16S2-2Н большим размером отображаемых символов. Контроллер управления ЖК-панелью аналогичен HD44780 фирмы Hitachi или KS0066 фирмы Samsung. Модули выпускаются со светодиодной подсветкой и без нее.

Модули МТ-16S2-2H и MT-16S2-2D позволяют отображать две строки по шестнадцать символов в каждой. Символы отображаются в матрице 5–8 точек и курсор. Интервалы между символами шириной в одну отображаемую точку. Эти модули являются полными аналогами ЖКИ производства POWERTIP, MICROTIPS, BOLYMIN и т. п.

MT-10S1-2 позволяет отображать 10 символов в одной строке при матрице символа 5–8 точек плюс курсор. Каждому отображаемому символу соответствует его код в ячейке памяти модуля. Модули содержат два вида памяти: кодов отображаемых символов и пользовательского знакогенератора, а также логику для управления ЖК-панелью. Габаритные размеры модулей (рис. 12–14).

Назначение выводов МТ-10S1-2, МТ-16S2-2Н и МТ-16S2-2D приведено в табл. 7.

ЖКИ со встроенным знакогенератором позволяют:

  • выводить на ЖК-панель изображения символов из встроенного знакогенератора;
  • запоминать до восьми изображений символов, задаваемых пользователем, а также выводить их;
  • выводить мигающий и немигающий курсор двух типов;
  • работать как по 8-, так и по 4-битной шине данных.

Временные диаграммы чтения и записи изображены на рис. 15. Динамические характеристики приведены в табл. 5. Характеристики модулей по постоянному току приведены в табл. 6.

Модули управляются по 4- или 8-битному интерфейсу. Разрядность интерфейса задается пользователем при помощи соответствующих команд (рис. 16). Указанное время выполнения команд является максимальным. Его нет необходимости выдерживать при условии чтения флага BS. Как только флаг BS равен 0, можно писать следующую команду или данные. Диаграмма обмена по 4-битному интерфейсу изображена на рис. 17, а по 8-битному - на рис. 18. При работе по 4-битному интерфейсу в каждом цикле необходимо передавать (читать или писать) все восемь бит. Передача старших четырех бит без последующей передачи младших четырех бит не допускается. Рекомендуемый алгоритм начальной установки модулей после подачи питания приведен на рис. 19.


Продолжение следует

Жидкокристаллические индикаторы появились недавно (70-е годы) и стали широко применяться в качестве СОИ. ЖК-индикаторы - пассивные устройства. Они не генерируют свет и требуют дополнительной подсветки, сами же выполняют роль модулятора, работая в режиме пропускания или отражения света.

Жидкие кристаллы (ЖК) представляют собой органические жидкости, имеющие удлиненные стержнеобразные молекулы. Различают ЖК трех типов (рис. 5.2): смектические, нематические и холестерические.

В смектических ЖК сильно вытянутые молекулы располагаются слоями одинаковой толщины, близкой к длине молекул. Ориентированы молекулы параллельно друг другу. У нематических ЖК отсутствует слоистая структура, а молекулы также ориентированы параллельно друг другу своими длинными осями. Холестерические ЖК имеют структуру слоистую, но в каждом слое молекулы вытянуты в некотором преимущественном направлении.

Рис. 5.2 - Типы жидкокристаллических индикаторов:

а - смектические; б - нематические; в - холестерические

Ориентация отдельной молекулы ЖК подвергается непрерывным тепловым флюктуациям, однако в любой точке жидкости существует средняя ориентация, характеризуемая единичным вектором, называемым директором D. Когда ЖК-вещество занимает большой объем, то в молекуле появляются области с независимыми ориентациями директора. Для придания одинаковой ориентации во всем рабочем пространстве ЖК заключают в узкое (несколько десятков микрометров) пространство между подложками. В результате специфическая ориентация молекул ЖК определяется и соседними молекулами, и граничной поверхностью подложки. Ориентирующее действие достигается напылением на подложки тонких пленок SiO 2 .

Молекулы ЖК представляют собой индивидуальные диполи. Ориентация молекул может меняться в результате различных электрогидродинамических эффектов, обусловленных протеканием даже небольшого тока или под действием электрического поля.

Конструкция элементарной ячейки ЖК-индикатора проста и содержит две стеклянные пластины, имеющие на внутренней стороне прозрачное проводящее покрытие. Между пластинами залит ЖК. Толщина ЖК лежит в пределах от 6 до 25 мкм. Такая конструкция по сути представляет собой плоский конденсатор. При отсутствии напряжения на ячейке ЖК-вещество однородно и прозрачно. При приложении к ячейке порогового напряжения возникает волнистая доменная структура. При превышении порогового напряжения доменная структура превращается в ячеистую, затем в жидкости возникает вихревое движение. ЖК теряет оптическую однородность и рассеивает свет во всех направлениях. Этот эффект называют динамическим рассеиванием. В настоящее время распространены индикаторы на основе эффекта динамического рассеивания, а также индикаторы, использующие полевой твист-эффект (закручивание) и эффект типа «гость-хозяин».

В настоящее время наиболее распространены индикаторы, использующие полевой твист-эффект (от англ. twist - закручивание). Работа ячейки со скрещенными поляризатором П и анализатором А показана на рис. 5.3.

В отсутствие напряжения питания на ячейке молекулы ЖК закручены приблизительно на 90° благодаря ориентирующему действию подложек П и А.

Поляризатор - это оптический элемент, пропускающий свет, поляризованный в одном направлении, и гасящий свет, поляризованный в противоположном направлении, в зависимости от ориентации поляризатора. Если оси второго поляризатора, называемого анализатором, параллельны осям первого, то свет проходит через второй поляризатор; если же оси анализатора перпендикулярны, излучение гасится.

Рис. 5.3 - Работа ЖК-индикатора на твист-эффекте при напряжениях:

а - нулевом; б - превышающем пороговое

Свет, падающий сверху, поляризуется таким образом, что его вектор поляризации совпадает с направлением директора D у верхней подложки. При прохождении через ЖК плоскость поляризации света вращается (как директор у молекул ЖК) и свет проходит через анализатор. При питании ячейки напряжением выше порогового, вектор поляризации ЖК приобретает вертикальное направление и ЖК не вращают плоскость поляризации, а анализатор не пропускает свет.

ЖК-индикаторы имеют преимущества по сравнению с индикаторами на эффекте динамического рассеяния (меньше рабочие токи 1-3 мкА/ см 2 вместо 10 мкА/ см 2 , и поэтому большую долговечность). Быстродействие ЖК на твист-эффекте гораздо выше, чем при использовании динамического рассеяния.

К недостаткам ЖК-индикаторов на твист-эффекте относится меньший, чем у индикаторов на эффекте динамического рассеяния, угол обзора, что связано с узкой диаграммой направленности света при твист-эффекте и влиянием поляризаторов. Применение поляризаторов приводит к потерям до 50 % света, а также повышает стоимость индикаторов.

Индикаторы без поляризаторов могут быть созданы на основе эффекта «гость-хозяин». Стержневидные молекулы красителя (гость) вводятся в ЖК (хозяин). Молекулы красителя стремятся ориентироваться параллельно осям молекул ЖК (рис. 5.4).


Рис. 5.4 - Работа ЖК-ячейки на эффекте «гость-хозяин» при напряжениях:

а - нулевом; б - превышающем пороговое; 1 - молекулы красителя; 2 - молекулы ЖК

В начальном состоянии, при нулевом напряжении на ЖК-ячейке, свет с любым направлением поляризации поглощается (рис. 5.4, а ). При наложении достаточно сильного электрического поля ЖК-вещество переходит в состояние, в котором все молекулы красителя ориентированы вертикально, а падающий на ячейку свет свободно проходит сквозь нее (рис. 5.4, б ).

Описанная система перспективна, так как позволяет получить почти черное позитивное изображение на белом фоне при высокой яркости и достаточно широком угле обзора. Контраст у индикаторов на эффекте «гость-хозяин» несколько хуже вследствие поглощения света красителем.

Достоинства ЖК-индикаторов заключаются в следующем:

Малая потребляемая мощность (110 мкВт/см 2);

Работа при высоком уровне внешней освещенности;

Простота конструкции и технологии изготовления;

Низкая стоимость, низкое рабочее напряжение.

К основным недостаткам ЖК-индикаторов следует отнести узкий диапазон рабочих температур (от -10 до +60° С), длительные переходные процессы, к тому же зависящие от температуры.

В табл. 5.5 приведены параметры некоторых ЖК-индика-торов, выпускаемых в нашей стране.

Таблица 5.5

В настоящее время проводятся работы по созданию матричных ЖК-индикаторов. Значительные успехи достигнуты в создании полицветных ЖК-индикаторов с использованием цветных светофильтров.

В статье подробно разбирается принцип действия и конструктивные модификации жидкокристаллических индикаторов, а также способы управления ЖКИ.

Принцип действия и конструктивные модификации жидкокристаллических индикаторов

Жидкокристаллические индикаторы (ЖКИ) являются пассивными индикаторами, преобразующими падающий на них свет.Они обладают рядом достоинств, к числу которых относятся:малая потребляемая мощность (для ЖКИ на основе твист-эффекта удельная мощность потребления несколько единиц мкВт/см 2); низкие рабочие напряжения (1,5...5 В) и хорошая совместимостьКМОП-микросхемам; удобное конструктивное исполнение - плоская форма экрана и ограниченная толщина индикатора (до 0,6 мм); возможность эффективной индикации в условиях сильной внешней засветки; большая долговечность (около 10-12 лет непрерывной работы).

Основные недостатки - сравнительно низкое быстродействие, ограниченный угол обзора и необходимость внешнего освещения. Жидкие кристаллы (ЖК) называют также анизотропными жидкостями, электрические и оптические свойства которых зависят от направления их наблюдения. Плотность ЖК близка к плотности воды и незначительно отличается от единицы. Жидкие кристаллы - диамагнитный материал; ЖК выталкиваются из магнитного поля; ЖК относятся к диэлектрикам; удельное сопротивление составляет 10 6 ... 10 10 Ом · см и зависит от наличия и концентрации проводящих примесей. Теплопроводность ЖК в направлении вдоль молекул отличается от теплопроводности в поперечном по отношению к молекулам направлении. Вследствие анизотропии электрических и оптических свойств в ЖК наблюдаются электрооптические эффекты, связанные с движением вещества - динамическое рассеяние (ДР), а также с поворотом молекул в электрическом поле - твист-эффект (ТЭ) и эффект гость-хозяин (Г - X).

Основой простейшего индикаторного элемента с использованием ЖК являются две стеклянные пластины. Вне зависимости от используемого электрооптического эффекта ЖКИ разделяются на два класса: индикаторы, работающие на просвет, и индикаторы, работающие на отражение. У первых обе стеклянные пластины прозрачны; электродами служат прозрачные электропроводящие пленки (например, двуокись олова), между которыми помещено ЖК вещество. За индикатором помещается источник света. Цвет и яркость индикатора определяются цветом и яркостью источника света. У вторых задний электрод изготовлен в виде зеркала; на соответствующую пластину наносится прозрачная, проводящая, отражающая свет пленка (например, пленка алюминия, никеля, золота). Такой индикатор использует внешнее отражающее освещение (специальная подсветка отсутствует).Конфигурация электродов индикатора определяется либо формой исходных стеклянных пластин, либо технологией металлизации. Как правило, пластины и электроды плоские, но в ряде приборов внутренняя поверхность задней пластины имеет сложную форму, образующую ряд оптических элементов, обеспечивающих отражение излучения в направлении источника света. В ЖКИ, работающем на основе ДР, при приложении электрического поля напряженностью около 5 кВ/см (примерно 30 В-к пленке ЖК толщиной 0,25- мм) молекулы переориентируются, возникают турбулентность и сильное оптическое рассеяние. Материал, прозрачный в отсутствие поля, становится непрозрачным. В таком ЖКИ, работающем на отражение, задний электрод представляет собой зеркало, на котором при подаче напряжения появляются участки молочно-белого цвета, форма которых соответствует конфигурации электродов. Для повышения однородности и четкости изображения, а также срока службы на поверхность проводящих слоев наносится тонкое химически инертное по отношению к ЖК оптически прозрачное покрытие. Материалом таких покрытий служат винилацетатные смолы, смолы на основе этилена, эпоксидные компаунды и т. п. Заднюю стеклянную пластину индикатора чернят, тогда на черном фоне возникает белое изображение. В ЖКИ с использованием ТЭ, работающем на отражение, стеклянные пластины расположены между двумя скрещенными поляризаторами, за задним из которых помещен диффузный отражатель. Поверхности пластин, обращенные к ЖК, полируются, чтобы молекулы ЖК в слоях, прилегающих к ним, ориентировались во взаимно перпендикулярных направлениях; в промежуточных слоях осуществляется постепенный поворот направлений ориентации. В отсутствие электрического поля свет в индикаторе следует за вращением молекул и на выходе индикатора плоскость его поляризации оказывается повернутой на 90°; свет проходит через индикатор. При наличии электрического поля ориентация молекул изменяется, плоскость поляризации света, проходящего через индикатор, не вращается и свет не проходит через индикатор. Так как отражатель диффузный, на слабо окрашенном сером фоне отображаются темные знаки. В ЖКИ на основе ТЭ, работающем на просвет, поляризаторы устанавливают так, чтобы их плоскости поляризации были параллельны друг другу. Индикатор не пропускает свет в отсутствие электрического поля и пропускаетпри подаче напряжения.

Опыт практического применения ЖКИ на эффекте ДР и ТЭ выявил достоинства индикаторов этих типов, показал их конкурентоспособность с другими классами индикаторов. К числу достоинств таких ЖКИ относится высокая эффективность.

Индикаторы на эффекте ДР характеризуются уровнем потребляемой мощности 5...10 мкВт/см 2 для постоянного тока (0,5 ...1,0 мкА/см 2) и 50...200 мкВт/см 2 для переменного тока (2... 10 мкА/см 2). Для индикаторов на основе ТЭ удельная потребляемая мощность составляет не более 20 мкВт/см 2 (менее 2 мкА/см 2). По экономичности ЖКИ намного превосходят современные светоизлучающие диоды. К достоинствам ЖКИ на эффекте ДР и ТЭ можно отнести способность сохранять и увеличивать контраст изображения при повышении уровня внешней освещенности, прямую совместимость с КМОП-микросхемами, обеспечивающую возможность низковольтного управления ЖКИ-рабочее напряжение ЖКИ на эффекте ДР не превышает 20, а на ТЭ - 5 В. Они имеют удобное конструктивное оформление. Индикаторы плоские; толщина индикатора практически определяется толщиной двух стекол и может составлять 0,6 ...0,8 мм. Велика их долговечность - при эксплуатации на переменном токе - более 40 тыс. ч. Вместе с тем ЖКИ характеризуются сравнительно низким быстродействием (десятки миллисекунд, особенно при пониженной температуре) и явно выраженной зависимостью параметров от температуры окружающей среды.Индикаторы на эффекте ДР и ТЭ преимущественно применяются там, где экономичность играет решающую роль: в электронных наручных часах,микрокалькуляторах с автономным питанием, портативных многофункциональных измерительных приборах, индикаторах для переносных радиоприемников, магнитофонов, автомобильных индикаторных устройствах и т. п.

В индикаторах на эффекте Г-Х тонкий слой ЖК-«хозяина» взаимодействует с молекулами «гостя». Слой ЖК-хозяина за счет поглощения световой энергии при отсутствии электрического поля приобретает характерную для красителя (гостя) окраску; под воздействием электрического поля он обесцвечивается. Но существуют также вещества гостя и хозяина, в которых окрашивание происходит под воздействием электрического поля. Цветовые различия в индикаторах на эффекте Г-Х хорошо воспринимаются в условиях высокой освещенности даже при небольшом яркостном контрасте.
Жидкокристаллические индикаторы, предназначенные для работы в условиях низкой освещенности (менее 35 кд/м 2) работают с подсветкой. Для подсветки используются лампы накаливания со средней мощностью примерно 0,5 Вт для знака высотой 2,5 см. Подсветка может быть создана различными способами, например с использованием лампы накаливания, свет которой проходит через жалюзи, что обеспечивает удобство наблюдения изображения в направлении, перпендикулярном поверхности индикации. Для увеличения угла обзора можно использовать две лампы накаливания. Сверхминиатюрную лампу накаливания можно встроить непосредственно между пластинами ЖК. Для повышения механической прочности ЖКИ изготовляют с металлическими крышками, которые закрывают заднюю стеклянную пластину, слой ЖК и герметически соединяются с лицевой пластиной. Такое конструктивное решение повышает влагостойкость индикатора. Для этого же ЖКИ размещают в пластмассовых корпусах.

Управление жидкокристаллическими индикаторами

Способы управления индикаторными панелями (ИП) на основе ЖК материалов определяются особенностями их физических свойств. Так, долговечность ЖКИ, работающего на постоянном токе, примерно на порядок ниже, чем при использовании переменного напряжения. Снижение долговечности в варианте постоянного тока обусловлено миграцией примесей к отражающему электроду под воздействием постоянной составляющей управляющего сигнала, в результате-падает контрастность и растет напряжение возбуждения. Предпочтительным оказывается возбуждение ЖКИ переменным током. в этом случае на электроды передней и задней пластин подаются импульсы напряжения прямоугольной формы одинаковой полярности, но сдвинутые по фазе так, что управляющее напряжение представляет собой биполярный сигнал, не имеющий постоянной составляющей. Для ЖК материалов характерна заметная инерционность при возбуждении и снятии возбуждения. Ячейка включается с запаздыванием на 10...20мс (время реакции) по отношению к фронту возбуждающего импульса, а время выключения (время релаксации) примерно на порядок превышает время включения. Известны различные способы уменьшения времени выключения ЖК ячеек. Можно после снятия напряжения возбуждения через несколько миллисекунд подать на ячейку короткий импульс относительно большой амплитуды. При этом ускоряется процесс нейтрализации ионов, накопленных в ЖК за время действия управляющего импульса, дипольные моменты молекул ЖК ориентируются параллельно вектору напряженности электрического поля. И рассеяние света быстро прекращается. Несмотря на простоту, этот способ неудобен, так как требует использования устройства генерирования импульсов высокого напряжения. При возбуждении ячейки переменным напряжением после прекращения возбуждающего напряжения можно подать сигнал частотой 10...40 кГц в течение нескольких миллисекунд; за это время ячейка гаснет. Время выключения (релаксации) сокращается до 5... 10 мс. Возбуждение ЖКИ может осуществляться частотным или фазовым способом. Частотный способ иллюстрируется схемой, показанной на рис. 1.

Она состоит из инвертора, двух вентилей (1 и 2) с двумя входами и транзисторного ключа. К коллектору транзистора приложено постоянное напряжение, равное удвоенной амплитуде переменного напряжения возбуждения (40 В). На вход одного из вентилей подано переменное напряжение частоты 30...500 Гц, на вход другого-напряжение частоты 10...40 кГц. С коллектора транзистора на сегмент индикатора подаются импульсы прямоугольной формы соответствующей частоты амплитудой 40 В. На общий электрод индикатора подается постоянное напряжение для компенсации постоянной составляющей возбуждающего сигнала. При подаче управляющего сигнала, соответствующего режиму включения сегмента индикатора на выходе вентиля 1 формируется положительный сигнал, переключающий транзистор с частотой возбуждения 30... 500 Гц. Сигнал на выходе вентиля 2 в это время отсутствует. При изменении полярности управляющего сигнала на выходе вентиля 2 возникает сигнал гашения сегмента с частотой 10...400 кГц. Устройство управления (без формирователей) удобно выполнять на комплементарных МДП-схемах серии К176.


Фазовый метод (рис. 2) предусматривает подачу на входы вентилей импульсов напряжения с частотой 15... 25 Гц, сдвинутых по фазе относительно друг друга на 180°. В зависимости от уровня управляющего сигнала на сег-мент с выхода формирователя подаются напряжения различных фаз. Сегмент не возбуждается при совпадении фаз на электродах ЖКИ; возбуждение происходит при различных фазах. По сравнению с частотным фазовый метод позволяет вдвое снизить напряжение питания, однако при этом не удается сократить время включения ЖКИ. При использовании фазового метода информацию можно выводить до 5 раз в секунду, это достаточно для цифровых приборов, калькуляторов, электронных часов. При более высоких частотах смены информации, например при динамическом принципе индикации, целесообразно использовать частотный метод управления. Управление многоразрядными ЖКИ может осуществляться в статическом или динамическом режиме. Структурная схема управления индикатором в статическом режиме показана на рис. 3. Каждое знакоместо индикатора З 1 -З n подключено к регистру оперативной памяти Роп.

Каждая кодовая комбинация регистра преобразуется в сегментный код индикатора дешифраторами управления ДУ, с выхода которых информация в коде индикатора через ключи блока формирователей БФ используется для коммутации питания сегментов индикатора. Для этого устройства управления характерно полное использование контраста знакоместа, так как время возбуждения свечения равно длительности цикла индикации. Недостаток схемы -необходимость иметь для каждого знакоместа свой дешифратор и формирователь для каждого сегмента. Число внутрисхемных соединений велико, оно равно произведению числа выходов на один цифровой разряд на число цифровых разрядов. При динамическом управлении (рис.4) пространственно разделенные разряды работают последовательно во времени.

Возможны два типа управления - с последовательной выборкой знакоместа и с последовательной выборкой цифры. В первом случае распределитель знакомест Рзм последовательно через формирователи ф 1 -ф n возбуждает знакоместа десятичных разрядов З 1 -З n , на которые синхронно с помощью коммутатора К, управляемого Рзм и дешифратором цифр ДШц, с регистра памяти подается информация, подлежащая индикации. Такт распределителя Тр=n tр, где Тр-время возбуждения одного разряда, a n-число разрядов. Частота распределителя fp=1/Tp=1/(n tp) должна быть выше или равной некоторой критической частоты fкр, при которой мерцание разрядов незаметно, т. е. fp= nf кp. При последовательной выборке, цифры дешифратор цифр ДШц последовательно и синхронно с генератором фазоимпульсных констант ГФК синтезирует цифры от 0 до 9 параллельно на всех знакоместах З 1 -З n . Информация от регистра памяти в фазоимпульсном десятичном коде подается через формирователи ф 1 -ф n на общий электрод знакомест. Цифра высвечивается момент совпадения информации регистра с синтезируемой цифрой. Устройство не имеет ограничений по числу разрядов, однако работает при постоянной скважности 10 (десять цифр 0 ... 9), что ограничивает возможности ее использования применительно к ЖКИ с малым контрастом. Основные параметры ЖКИ: контрастность К и пропускание, пороговое напряжение Uпop, управляющее напряжение Uynp, время включения (реакция) Твкл, время выключения (релаксации) Твыкл. (Отношение интенсивности света, выходящего из ячейки называется пропусканием, если наблюдение ведется в направлении навстречу входящему лучу и контрастностью во всех других случаях.) Для ДР ячеек контраст составляет от 15:1 до 100:1, пропускание-минумум 20:1. Для ячеек на основе ТЭ контрастность и пропускание-от 40:1 до 100:1.
Значения порогового и управляющего напряжений определяются по коэффициенту рассеяния света в ячейке Кр.

Пороговое напряжение Unop соответствует значению Кр==0,05. Управляющее напряжение Uynp-значению Кр=0,5. Значение Unop для индикатора, использующего эффект ДР, увеличивается на низких и высоких частотах (индикатор становится менее эффективным). Индикаторы на основе ТЭ обычно используют на частотах 1... 10 кГц. В справочных данных индикаторов указывают рекомендуемую частоту управляющего напряжения.
Время включения Твкл определяется как время, в течение которого контрастность достигает 90% установившегося значения, а время выключения Твыкл-как время уменьшения контрастности от 90 до 10% установившегося значения.

Долговечность жидкокристаллических индикаторов

В процессе эксплуатации ЖКИ изменяется внешний вид информационных полей, что проявляется как ухудшение и исчезновение контраста между активными и пассивными зонами, увеличивается время реакции. Изменения внешнего вида и времени реакции является следствием электрохимических явлений на границе жидкокристаллическое вещество (ЖКВ)-поверхность подложки. Скорость деградационных процессов в основном определяется постоянной составляющей напряжения возбуждения, предельно допустимое значение которого указывается в справочных данных. Наличие постоянной составляющей приводит к электролизу ЖКВ, в результате которого возникает газовыделение в объеме ЖКВ, образуются пузырьки газов, визуально воспринимаемые как черные точки. Электроды индикатора (проводящие пленки) теряют свою прозрачность, и сегменты становятся видимыми в отсутствие напряжения возбуждения. В результате старения нарушается ориентация молекул ЖКВ и растет ток, потребляемый индикатором. В процессе эксплуатации ЖКВ потребляемый ток может расти за счет проникновения влаги через слой герметика. Влага разрушает ЖКВ. Особенно опасно сочетание влаги с воздействием высокой температуры. При эксплуатации ЖКИ в условиях низкой температуры отдельные компоненты ЖКВ могут кристаллизоваться. Чередование замораживания и размораживания ЖКВ может привести к образованию воздушных пузырьков, которые выглядят как черные точки.

  1. Изучить схему подключения жидкокристаллического индикатора (ЖКИ) к микроконтроллеру.
  2. Изучить особенности работы символьного ЖКИ.
  3. Изучить особенность параллельной синхронной передачи данных.
  4. Научится выводить на ЖКИ информацию.

2 Предварительная подготовка к работе

  1. По конспекту лекций и рекомендуемой литературе изучить принцип работы символьного жидкокристаллического индикатора.
  2. По конспекту лекций и рекомендуемой литературе изучить принцип работы параллельных портов ввода-вывода микроконтроллера.
  3. Составить алгоритм работы программы, соответственно заданию.
  4. Составить программу на языке программирования С.

3 Краткие теоретические сведения

3.1 Устройство и принцип работы символьного жидкокристаллического индикатора

В настоящее время в микропроцессорных системах для отображения широко используют жидкокристаллические индикаторы (ЖКИ) . Условно все ЖКИ можно разделить на две категории: символьные , или знакосинтезирующие, и графические . Графические индикаторы представляют собой матрицу из m строк и n столбцов, на пересечении которых находятся пиксели. Пиксель представляет собой неделимый объект прямоугольной или круглой формы, обладающий определённым цветом; пиксель – наименьшая единица растрового изображения. Если на определенный столбец и строку подать электрический сигнал, то пиксель на их пересечении изменит свой цвет. Подавая группу сигналов на столбцы и строки можно формировать по точкам произвольное графическое изображение. Так работает графический ЖКИ. В символьном же ЖКИ матрица пикселей разбита на подматрицы, каждая подматрица предназначена для формирования одного символа: цифры, буквы или знака препинания. Как правило, для формирования одного символа используют матрицу из восьми строк и пяти столбцов. Символьные индикаторы бывают одно-, двух- и четырехстрочными.

Для упрощения взаимодействия микропроцессорной системы и ЖКИ используют специализированную микросхему – контроллер (драйвер) ЖКИ. Он управляет пикселями жидкокристаллического дисплея и интерфейсной частью индикатора. Обычно такой контроллер входит в состав индикатора. В целом жидкокристаллический индикатор представляет собой печатную плату, на которой смонтирован сам дисплей, контроллер и необходимые дополнительные электронные компоненты. Внешний вид ЖКИ показан на рисунке ниже.

Рисунок 1 – Внешний вид жидкокристаллического индикатора

4 Задание к работе в лаборатории

4.1 Вывод символа на ЖКИ

  1. Разработайте алгоритм программы, выводящей на экран ЖКИ ваше имя в заданной строке. Режим работы ЖКИ и номер строки определяется согласно варианту задания (таблица 2).
  2. По принципиальной схеме учебного стенда LESO1 определите, к каким выводам микроконтроллера ADuC842 подключен ЖКИ. По таблице SFR определите адреса используемых портов ввода-вывода.
  3. Разработайте и введите текст программы в соответствии с созданным алгоритмом.
  4. Оттранслируйте программу, и исправьте синтаксические ошибки.
  5. Убедитесь, что на экране дисплея в заданной позиции появился требуемый символ.

4.2 Управление ЖКИ через последовательный порт персонального компьютера (дополнительно)

  1. Измените программу таким образом, что бы на экране ЖКИ выводилась информация, переданная с персонального компьютера через UART. Передача команды осуществляется через терминал nwFlash. Выбор источника синхронизации и скорости передачи данных осуществляется по усмотрению студента.
  2. Загрузите полученный *.hex файл в лабораторный стенд LESO1.
  3. Через терминал nwFlash передайте коды символов, убедитесь, что соответствующие символы выводятся на экране индикатора.

Таблица 2 – Варианты заданий

номер варианта номер строки режим курсора
1 первая выключен
2 вторая включен, мерцает
3 первая включен, не мерцает
4 вторая выключен
5 первая включен, мерцает
6 вторая включен, не мерцает
7 первая выключен
8 вторая включен, мерцает
9 первая включен, не мерцает
10 вторая выключен
11 первая включен, мерцает
12 вторая включен, не мерцает
13 первая выключен
14 вторая включен, мерцает
15 первая включен, не мерцает

5 Указания к составлению отчета

Отчет должен содержать:

  1. Цель работы.
  2. Принципиальную схему подключения ЖКИ к управляющему микроконтроллер.
  3. Структурную схему ЖКИ.
  4. Диаграммы передачи данных по параллельному интерфейсу.
  5. Расчет параметров таймера.
  6. Графическую схему алгоритма работы программы.
  7. Исходный текст программы.
  8. Содержимое файла листинга программного проекта.
  9. Выводы по выполненной лабораторной работе.

Схемы, а также отчет в целом, выполняются согласно нормам ЕСКД.


ЖИДКОКРИСТАЛЛИЧЕСКИЕ ИНДИКАТОРЫ

Жидкокристаллические индикаторы (ЖКИ) управляют отражением и пропусканием света для создания изображений цифр, букв, символов и т.д. В отличии от светодиодов (Light-Emitting Diodes, LEDs), жидкокристаллические индикаторы не излучают свет.
Основу ЖКИ составляют жидкие кристаллы (ЖК), молекулы которых упорядоченны послойно определенным образом между двумя стеклянными пластинами. В каждом слое сигарообразные молекулы ЖК выстраиваются в одном направлении, их оси становятся параллельны (рис.1).

рис. 1 Один слой молекул ЖК. Все молекулы параллельны друг другу.
Стеклянные пластины имеют специальное покрытие, такое что направленность молекул в двух крайних слоях перпендикулярна. Ориентация каждого слоя ЖК плавно изменяется от верхнего к нижнему слою, формируя спираль (рис.2). Эта спираль "скручивает" поляризацию света по мере его прохождения через дисплей.


рис. 2 Несколько слоев молекул ЖК, упорядоченные так,
что поляризованный свет "скручивается", проходя через них.
Молекулы в разных слоях выстраиваются по спирали.

Под действием электрического поля молекулы ЖК переориентируются параллельно полю. Этот процесс называется твист-нематическим полевым эффектом (twisted nematic field effect, TNFE). При такой ориентации поляризация света не скручивается при прохождении через слой ЖК (рис. 3а и 3б). Если передний поляризатор ориентирован перпендикулярно заднему, свет пройдет через включенный дисплей, но заблокируется задним поляризатором. В этом случае ЖКИ действует как заслонка свету.
Отображение различных символов достигается избирательным травлением проводящей поверхности, предварительно созданной на стекле. Не вытравленные области становятся символами, а вытравленные - фоном дисплея.


рис. 3а "Выключенное" состояние ЖКИ.
ЖК молекулы формируют спираль, скручивая поляризацию света.


рис. 3б "Включенное" состояние.
Электрическое поле переориентирует ЖК молекулы так
что они не изменяют поляризацию света.

Символы создаются из одного или нескольких сегментов. Каждый сегмент может быть адресован (запитан) идивидуально, чтобы создать отдельное электрическое поле. Таким образом прохождение света управляется электрически, включая и отключая необходимые сегменты. В неактивной части дисплея направленность молекул остается спиральной, формируя фон. Запитанные сегменты составляют символы, контрастирующие с фоном.
В зависимости от ориентации поляризатора, ЖКИ может отображать позитивное или негативное изображение. В дисплее с позитивным изображением передний и задний поляризатор перпендикулярны друг другу, так что незапитанные сегменты и фон пропускают свет с измененной поляризацией, а запитанные препятствуют прохождению света. В результате - темные символы на светлом фоне.
В дисплее с негативным изображением поляризаторы параллельны, "в фазе", препятствуют прохождению света с повернутой поляризацией, так что незапитанные символы и фон темные, а запитанные - светлые.
Рефлективный ЖКИ (reflective LCD) имеет отражатель (рефлектор) за задним поляризатором, который отражает свет, прошедший через незапитанные сегменты и фон. В негативных рефлективных дисплеях свет отражается через запитанные, "включенные" сегменты. Трансмиссивные дисплеи (transmissive LCD) используют те же принципы, но фон или сегменты становятся ярче за счет использования задней подсветки.


рис. 4 Основные компоненты и конструкция рефлективного ЖКИ.

Режимы отображения ЖКИ определяют то, как индикатор управляет светом для создания изображения. Чтобы выбрать оптимальный режим для конкретного приложения необходимо рассмотреть типичные условия освещения индикатора (см. таблицу 1).

Таблица 1. Режимы отображения ЖКИ

Режим отображения Изображение Применение Прямой солнечный свет Офисное освещение Приглушенный свет Очень слабый свет
Рефлективный позитивный Темные сегменты на светлом фоне Без подсветки. Обеспечивает лучший фронтальный контраст и стабильность. Великолепно Очень хорошо Плохо Очень плохо
Трансфлективный позитивный Темные сегменты на сером фоне Может освещаться отраженным внешним светом или подсветкой. Великолепно (без подсветки) Хорошо (без подсветки) Хорошо (подсветка) Очень хорошо (подсветка)
Трансфлективный негативный Светло-серые сегменты на темном фоне Требуется яркое освещение или подсветка. Часто используется с цветным трансфлектором (полупрозрачный отражатель). Хорошо (без подсветки) Хорошо (без подсветки) Хорошо (подсветка) Очень хорошо (подсветка)
Трансмиссивный позитивный Темные сегменты на подсвеченном фоне Разработан для плохих условий освещения, возможно использование при внешнем освещении. Хорошо (без подсветки) Хорошо (подсветка) Очень хорошо (подсветка) Великолепно (подсветка)
Трансмиссивный негативный Подсвеченные сегменты на темном фоне Не может быть использован без подсветки. Плохо (подсветка) Хорошо (подсветка) Очень хорошо (подсветка) Великолепно (подсветка)

Рефлективные (работающие на отражение) индикаторы
Обычно рефлективные ЖКИ используют режим отображения с темными символами на светлом фоне (так называемое позитивное изображение).
В индикаторе с позитивным изображением передний и задний поляризаторы находятся в противофазе, или перекрестно поляризованы на 90°.
Если сегмент "выключен", внешний свет идет по слелующему пути: проходит через вертикальный поляризатор, через прозрачный электрод сегмента, через ЖК молекулы которые скручивают его на 90 °, через прозрачный общий электрод, через горизонтальный поляризатор, и попадает на рефлектор, который посылает свет обратно по тому же пути (рис. 5а).


рис. 5а Рефлективный индикатор в выключенном состоянии.
Свет проходит через горизонтальный поляризатор и отражается обратно.

Если сегмент "включен", внешний свет не изменяет своей поляризации при проходе через слой жидких кристаллов. Таким образом поляризация света противоположна заднему поляризатору, что не дает свету пройти к отражателю. Так как свет не отражается, получается темный сегмент (рис. 5б).


рис. 5б
с горизонтальным поляризатором, так что он не доходит до рефлектора.

Рефлективные индикаторы очень яркие, с отличным контрастом и имеют широкий угол обзора. Они требуют хорошего внешнего освещения и не исползуют искуственной задней подсветки (хотя в некоторых моделях применяют подсветку сверху). Благодаря малым токам потребления рефлективные индикаторы часто используются в устройствах с питанием от батареек.

Трансмиссивные (работающие на пропускание) индикаторы
Трансмиссивные ЖКИ не отражают свет. Напротив, они создают изображение, управляя светом искуственного источника освещения, расположенного позади индикатора.
В трансмиссивных индикаторах передний и задний поляризаторы находятся "в фазе" друг с другом (параллельны). В выключенным сегменте поляризованый свет подсветки скручивается на 90° молекулами ЖК и оказывается в противофазе с передним поляризатором. Поляризатор блокирует свет, создавая темный сегмент.


рис. 6а В выключенном состоянии свет не проходит
сквозь трансмиссивный дисплей.

Если сегмент включен, свет не скручивается, оказываясь в фазе с передним поляризатором, и проходит через него, создавая световой рисунок. Таким образом трансмиссивный дисплей создает светлое изображение на темном фоне (негативное изображение).


рис. 6б Во включенном состоянии свет находится в противофазе
с горизонтальным поляризатором, та что он не доходит до рефлектора.

Трансмиссивные индикаторы должны иметь заднюю подсветку, чтобы гарантировать равномерное свечение сегментов. Они хороши для использования в условиях приглушенного или слабого освещения. В условиях прямого солнечного света подсветка не может преодолеть солнечных лучей и изображение не заметно.

Трансрефлективные (работающие на пропускание и отражение) индикаторы
Трансрефлективные индикаторы используют белый или серебрянный полупрозрачный материал, который отражает часть внешнего света, а также пропускает свет задней подсветки. Поскольку эти индикаторы как отражают, так и пропускают свет, они могут использоваться в широком диапазоне яркостей освещения. Примером могут служить индикаторы мобильных телефонов - они читаемы как при ярком свете, так и в полной темноте. Трансфлективные дисплеи имеют более низкую контрастность по сравнению с рефлективными, так как часть света проходит сквозь отражатель.

Варианты подсветки (backlight)
Ниже представлены варианты подсветки ЖКИ.


рис. 7

Таблица 2. Сравнение методов подсветки

Свойство Светодиодный Лампами накаливания Электролюминесцентный
Яркость Средняя Высокая Малая - Средняя
Цвет Красный - Янтарный - Зеленый Белый Белый
Размер Малый Малый - Средний Тонкий
Крепление SMD - Радиальный Радиальный - Осевой Осевой
Напряжение 5 Вольт 1,5 В - 28 В 45 В - 100 В
Ток при 5 В (на кв. дюйм) 10 - 30 мА 20 мА 1 - 10 мА
Температура Теплый Горячий Холодный
Стоимость (на кв. дюйм) 0,10 - 1,00 долл. 0,10 - 0,80 долл. 0,50 - 2,00 долл.
Распространение света Направленное Сферическое Ламбертское
Ударопрочность Отличная Низкая Отличная
Срок службы (часов) 100 000 150 - 10 000 500 -15 000

Температура использования и хранения
Анализ температурного диапазона очень важен при описании ЖКИ.
Все ЖК материалы имеют строго определенный верхний предел рабочей температуры, или изотропический предел. Выше этого предела молекулы ЖК принимают произвольную ориентацию. Изотропические условия делают позитивное изображение полностью темным, а негативное - прозрачным. Изотропическая температура называется температурой нематическо-изотропического перехода, или N-I перехода.
ЖКИ могут восстанавливаться после короткого воздействия изотропической температуры, хотя температуры свыше 110°C разрушают внутреннее покрытие индикатора.
Нижний предел температурного диапазона ЖКИ не так хорошо определен, как верхний. При низких температурах время срабатывания индикатора увеличивается, так как замедляется движение молекул и возрастает вязкозть ЖК вещества.
При очень низких температурах ЖК вещество переходит в твердое, или кристаллическое состояние. Эта температура называется температурой кристаллическо-нематического перехода, или C-N перехода. Однако ЖК материал "суперхолодный", воспринимает температуры ниже C-N предела, фактически поворачивая кристаллы вещества. (Обычно при воздействиях до -60°C). В результате ЖКИ часто работоспособны при температурах ниже их C-N перехода.
Эффект низких температур обычно обратим. К примеру, ЖКИ опущенный в жидкий азот возвращается в нормальное состояние после короткого периода нагрева.
В добавление, ЖК материалы имеют низкий температурный коэффициент. Этот коэффициент важен для мультиплексных индикаторов по причине низкого значения действущего напряжения управления. За пределами температурного диапазона может потребоваться температурная компенсация.

Нагреватели
Индикаторы с интегральными нагревателями могут работать при температурах до -55°C. Нагреватели требуют температурно-управляемого источника питания. При использовании нагревателями время отклика индикатора при низких температурах остается таким же, как и при 0°C. Увеличение мощности нагревателя уменьшает время нагрева. Обычно требуется мощность между 2 и 3 ваттами на квадратный дюйм поверхности индикатора.

Внешнее освещение
Как уже обсуждалось, яркость внешнего освещения индикатора очень важна. Выбор типа индикатора осуществляется именно исходя из условий внешнего освещения.

Внешние воздействия
Существует множество модификаций ЖКИ, стойких к различного рода внешним воздействиям, так как этого требуют военные стандарты. К примеру существует "высокостабильное" покрытие для защиты от высокой температуры и влажности. Покрытие - "барьер" препятствует загрязнению проводящими веществами, могущими вызвать короткое замыкание в индикаторе. Тонкопленочные нагреватели могут использоваться в низкотемпературных приложениях. Правильный выбор соединителя также помогает преодолеть внешние воздействия.

Угол и направление обзора

рис. 8 Конус обзора описывает область,
в пределах которой наблюдатель может прочитать информацию на дисплее.

При выборе ЖКИ следует определить как наблюдатель будет смотреть на индикатор: Будет ли он сидеть или стоять? Под каким углом расположен дисплей? Какая требуется ширина угла обзора? Дело в том, что контрастность изображения на индикаторе зависит от относительного расположения дисплея и наблюдателя.
Обычно направление зрения описывается аналогично циферблату часов. Если наблюдатель смотрит сверху, это называется 12 часов, снизу - 6 часов, справа - 3 часа, слева - 9 часов. Критические углы зрения (наклона индикатора) зависят от направления обзора и могут быть проиллюстрированы изоконтрастными кривыми на графике в полярной системе координат (рис. 9).
Угол обзора зависит также от толщины слоя ЖК. Большинство ЖКИ изготавливаются по второму классу с толщиной от 6 до 8 микрон. Первый класс имеет толщину от 3 до 4 микрон. Наиболее широкий угол обзора (до165°) достигается при 4-х микронной технологии. При этом также уменьшается время отклика (срабатывания) ЖКИ.


рис. 9 Изоконтрастная кривая ЖКИ.
Объективное измерение контрастности изображения под разными углами.

Контраст изображения
Контрастность главным образом определяется условиями внешнего освещения и правильностью выбора позитивного или негативного изображения. При повышении действующего среднеквадратического напряжения контрастность увеличиваетвя. Эффективность поляризатора и ЖК жидкости также способствуют лучшей контрастности.

Сегменты ЖКИ
Части ЖКИ, работающие как заслонки, включаясь и выключаясь для формирования изображений, называются сегментами.
Сегменты создаются прозрачными электродами из оксидов индия и олова, нанесенными на стекло ЖКИ. Цифры от 0 до 9 и некоторые буквы могут быть отображены на семисегментном индикаторе. Шестнадцатисегментный индикатор может отобразить цифры, все латинские и почти все русские буквы (кроме Й,Ц,Щ). Для того чтобы символы были менее угловатыми и более натуральными, используют матричные индикаторы. С их помощью можно также отображать небольшие изображения. Количество сегментов индикатора влияет на метод управления им.


рис. 10 Семисегментный дисплей,
шестнадцатисегментный дисплей
матричный дисплей 5х7

В добавление к алфавитно-цифовым символам, ЖКИ может отображать небольшие картинки, или иконки. К примеру дисплей на рис.11 отображает функции копира. Эти изображения не изменяются - они могут только вкючатся или отключатся.


рис. 11 Функциональный дисплей копировального аппарата.

Время срабатывания
ЖКИ обычно имеет время срабатывания 50 мс при 20°C, а лучшие модели - до 10 мс. Стандартный ЖКИ может отображать сигнал до 10 Гц, если требуется; невооруженным глазом тяжело отследить данные с такой частотой.

Цветные изображения
Существует несколько методов создать цветное изображение в ЖКИ (таблица 3).

Таблица 3. Цвет в ЖКИ

Двухрядное расположение выводов (Dual-In-Line, DIL)
Двухрядное расположение выводов удобно для использования в суровых условиях. DIL обеспечивает быструю, ровную установку индикатора. Выводы могут быть впаяны в печатную плату или вставлены в разъем. Эти хорошо проводящие, нержавеющие выводы обеспечивают жесткое крепление, даже при ударе или вибрации.


рис. 12 DIL выводы

Резиновый соединитель (Elastomeric, rubber connector)
Резиновый проводник представляет из себя гибкий резиновый брусочек с большим количеством поперечных проводящих прожилок (как гребенка) с очень малым шагом. Он обеспечивает быстрый монтаж / демонтаж без паянных соединений или абразивных контактов, самовыравнивание. Это соединение часто используется в небольших инструментах, где размер ограничен. Хотя оно стойко к ударам и вибрациям, резиновое соединение не стоит применять в особо арессивных средах без повышенного внимания к защите ЖКИ.


рис. 13 Резиновый соединитель

Гибкий соединитель (Flex, heat seal connector)
Как печатная плата, так и ЖКИ присоединяются к гибкому шлейфу посредством нагревания под давлением. Это соединение используется в наиболее подвижных устройствах, где смещения могут вызвать поломку жестких выводов. Гибкое соединение часто используется в очень больших ЖКИ или устройствах требующих отдельную установку платы контроллера. Популярность этого метода соединения растет и разработчики находят ему все новые применения.


рис. 14 Гибкое соединение

Общие принципы
Существует два типа контроллеров ЖКИ: прямой и мультиплексный. Оба типа имеют свои преимущества и недостатки.

Таблица 4. Сравнение прямых и мультиплексных контроллеров

Мультиплексное управление
Мультиплексное (MUX) управление уменьшает количество необходимых выводов ЖКИ. Мультиплексные дисплеи имеют более одного общего вывода (COM). Мультиплексность означает, что каждый вывод сегментов (SEG) адресует сегмент на каждом из выводов COM. Количество общих выводов называется значением мультиплексности ЖКИ.


рис. 15 Вариант организации выводов COM и SEG

Энергопотребление
Обычно ЖКИ требует очень небольшой энергии для работы - от 5 до 25 мкА при 5 В (на кв. дюйм) для TN индикатора. Искуственная подсветка или нагрев требуют дополнительной энергии.
Все ЖКИ тебуют чистого переменного управляющего напряжения. Случайное постоянное напряжение, как например постоянная составляющая в сигнале, может значительно уменьшить срок службы индикатора и должно быть ограниченно 50 мВ.